
A Toolchain for AI-Assisted Code
Specification, Synthesis and Verification

Shaowei Lin1, Evan Miyazono2, Daniel Windham2

Executive Summary
Critical infrastructure is vulnerable to both malicious attacks and unintended failures, and these
risks are expected to grow in the foreseeable future. Currently, deploying formal verification
(FV) across critical cyber physical systems would dramatically improve safety and security, but
has historically been too expensive and labor-intensive to use outside the smallest, most critical
subsystems. Machine Learning tools that generate code and proofs from specifications could
allow widespread use of FV within years, not decades, converting AI from a source of growing
cyber risks into a technology with important defensive potential. To address these challenges,
this document outlines a strategy for leveraging Machine Learning (ML) to scale FV, thereby
enhancing the security and updating capabilities of legacy software systems.

Formally verifying software involves generating (a) the software itself, (b) a specification of how
the software should behave, and (c) a mathematical proof that the software satisfies the
specification. We could have ML tools that first help users generate specifications, and then
automate most or all of the creation of the software and the proofs. This is clearly superior to
current workflows, where ML systems are generating software that receives cursory reviews
from human users, and has been shown to be less secure. Furthermore, as language models
generate increasingly large and complicated libraries, we should expect that reviewing the
specification of those libraries will be simpler than directly reviewing the code itself; as a result,
tools for specifications will dramatically increase the accessibility of secure software generation.

Instead of attempting to fully automate the formal verification process, the toolchain envisioned
here aims to augment existing formal verification workflows. This will involve incorporating
human feedback in refining specifications, selecting implementations, and aiding in proofs.
Focusing on addressing pain-points in existing workflows will ensure that the tools provide
value prior to solving the biggest unsolved problems in fully-automated formalization.

This toolchain describes tools to integrate seamlessly into existing critical engineering
workflows, which we have named Formalize (verifying existing unverified and partially verified

2 Atlas Computing. {evan, daniel}@atlascomputing.org

1 Topos Institute. shaowei@topos.institute

Version 1.1 (2024-08-05)

code), Construct (generating code and proofs from a specification), and Translate (generating a
specification as well as new code and proofs from legacy code in a different programming
language). The 12 projects proposed and described in this toolchain are:

WorldModel Case studies of logical frameworks and domain specific logics

LegacyCode Case studies of legacy codes, documentations and executables

InterAgent Collaboration between human and AI agents

InterFramework Transpilation between logical frameworks

Autoformalization Convert natural language to formal languages

Autoinformalization Convert formal languages to natural languages

Implementation2Spec Code implementations to formal specification

InputOutput2Spec Input/output pairs from an executable to formal specifications

GenerateAndCheck Generating implementations for autoverification in auto-active frameworks

CorrectByConstruction Generating implementations and proofs jointly in expressive frameworks

ProgramRepair Reconcile a divergence in program, proof, and specification

ProgramEquivalence Determine if two programs have equivalent or divergent behavior.

The relationship between tools is shown in the following diagram (datasets projects not shown).

When completed, we expect these tools will considerably lower the cost of generating formally
verified software. While our estimate for a bare minimum prototype of each tool in this entire
toolchain would take roughly 21 work-years and cost just over $6M, most of the work could be
performed in parallel, with the most uncertain tools requiring 2 years to demonstrate a polished,
generally useful. Additionally, we also expect that one to three of these tools could deliver
meaningful time and cost reductions to existing formal verification workflows in a matter of
months while providing valuable training data to improve the tools themselves.

The GitHub repository github.com/atlas-computing-org/awesome-AIxFV will be a community
tracker for projects that achieve the functionality of these tools.

2

http://github.com/atlas-computing-org/awesome-AIxFV

Executive Summary 1

Motivation 4

The Growing Risk of Unverified Code 4

Formal Verification Is a Critical, Yet Costly Tool for Security 4

AI Could Be Part of the Solution 5

Practicalities and Challenges of Scaling Formal Verification 6

Strategy 9

Overview of Application Workflow 9

Overview of Tools 10

Building Specific Workflows from Tools 11

The Modeling Theme 15

WorldModel - Case studies of logical frameworks and domain specific logics 17

LegacyCode - Case studies of legacy codes, documentations and executable programs 18

InterAgent - Collaboration between human and AI agents 20

InterFramework - Transpilation between logical frameworks 24

The Specification Theme 26

Autoformalization - From natural languages to formal languages 28

Autoinformalization - From formal languages to natural languages 30

Implementation2Spec - Code implementations to formal specification 31

InputOutput2Spec - Input/output pairs from an executable to formal specifications 33

The Generation Theme 34

(Spec2Implementation) GenerateAndCheck - Generating implementations
for autoverification in auto-active frameworks 38

(Spec2Implementation) CorrectByConstruction - Generating implementations
and proofs jointly in expressive frameworks 41

ProgramRepair - Reconcile a divergence in program, proof, and specification 45

ProgramEquivalence- Determine if two programs have equivalent or divergent behavior 47

Call to action 49

Acknowledgments 49

3

Motivation

The Growing Risk of Unverified Code

The software running the modern world is vulnerable. This leads to serious risks for critical
infrastructure, whether that infrastructure takes the form of software powering our apps,
websites, databases, and networks, or software running critical hardware like pacemakers or
power plants.

AI architectures, optimized for tasks like text completion, now answer programming challenges
nearly as well as median software engineers,3 which enables products like GitHub’s Copilot. One
experiment showed Copilot reduced the time needed to complete a software project by 55%4,
with one user quoted saying that, with Copilot, “I have to think less, and when I have to think
it’s the fun stuff.” Unfortunately, ensuring security is rarely “the fun stuff.” Furthermore, a 2022
study found that participants with access to an AI assistant wrote “significantly less secure code
than those without access”5, and it’s not guaranteed this trend will reverse as assistants improve.

As research advances, we may see AI code generators suddenly able to patch vulnerabilities and
generate exploits simultaneously, leading to an arms race that favors attackers, since patches
take time to deploy. Even before that point, AI code generators will lower barriers to entry
around new skill acquisition, changing the cybersecurity arms race to one limited, not by skill,
but by willingness to quickly deploy new, untested AI capabilities.

However, these risks could be avoided with a different AI architecture. Rather than increase the
capabilities of AI in the form of transformer-based language models, we should advance
architectures that generate verifiable outputs, thereby providing us with the highest level of
safety assurances for code, just like we do in other safety critical areas of engineering.

Formal Verification Is a Critical, Yet Costly Tool for Security

Formal verification (FV) allows programmers to mathematically prove properties of software for
any possible inputs, and is generally considered the gold standard for security and robustness6.

6The First Tri-LabWorkshop on Formal Verification: Capabilities, Challenges, Research Opportunities, and Exemplars, 2024.

5https://ee.stanford.edu/dan-boneh-and-team-find-relying-ai-more-likely-make-your-code-buggier

4https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

3https://paperswithcode.com/sota/code-generation-on-humaneval

4

https://www.sandia.gov/app/uploads/sites/222/2024/02/twofv23_report.pdf
https://ee.stanford.edu/dan-boneh-and-team-find-relying-ai-more-likely-make-your-code-buggier
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://paperswithcode.com/sota/code-generation-on-humaneval

Formally verified software consists of software, specifications that list goals & constraints, and
proofs that the software meets the specification. Examples include:

- Formal methods are key in validating high assurance systems, and are generally
considered the de facto standard for demonstrating safety of flight-critical software
systems certified by the FAA7.

- The DARPA HACMS program yielded a formally verified system that maintained
security of an autonomous aircraft while under attack from a red team with physical
access. One “attacker” even stated “if you fully deployed HACMS technologies … I may
not be able to imagine a way that I could even try to get in”8.

- Formally verified microkernels (seL4), compilers (CompCert, CakeML), cryptographic
tools (HACL*) and transport libraries (WireGuard, Project Everest), show consumer
demand where reliability or efficiency justifies cost.

Verified code in one project was estimated to cost roughly twice that of an analogous unverified
system9. Creating code, specifications, and proofs may seem inevitably costlier than code alone,
but new tools may make this no longer true.

AI Could Be Part of the Solution

Instead of building AI-powered tools that reduce the time and thought needed to program, we
should build tools that10:

- …generate robust software specifications (and eventually, of general engineering systems)
from natural language

- …help humans understand, compare, improve, or identify edge cases in various
specifications

- …automatically synthesize programs from formal specifications with minimal or no
human input required

- …provide objective proofs (or evidence) that the synthesized programs meet the
specifications

These tools would enable systems to be designed, built, and audited with far less specialized
expertise, and resulting systems would have verifiable guarantees. Additionally, when
dependencies change, formally specified systems could be updated easily (or automatically) by
generating updated software from the new dependencies and the old specifications.

This future requires shifting attention to AI architectures that carry more benefits with similar
costs and lower risks, rather than advancing risky general capabilities. Ideally, early adopters

10 Compare our list with the Three Pillars of Machine Programming - Intention, Invention and Adaptation.

9 https://www.youtube.com/watch?v=lRndE7rSXiI

8 https://www.youtube.com/watch?v=OyqNpn6JpBk and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597724/

7 Rushby, J. (1995). FormalMethods and their Role in the Certification of Critical Systems (SRI-CSL-95-1). Computer Science Laboratory, SRI International.

5

https://sel4.systems/About/home.pml
https://compcert.org/
https://cakeml.org/
https://hacl-star.github.io/
https://www.wireguard.com/formal-verification/
https://project-everest.github.io/
https://arxiv.org/pdf/1803.07244
https://www.youtube.com/watch?v=lRndE7rSXiI
https://www.youtube.com/watch?v=OyqNpn6JpBk
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597724/

would find it to be cheap and easy to use formal methods to provide quantitative assurances
about the safety of AI outputs, diverting R&D attention from risky general.

In practice, use of FV tooling is limited by the number of developers familiar with FV and
ability for AI capabilities to support their workflows, the latter of which is itself likely limited by
the small amount of training data available for LLM-based formalization. Thus, the first AI
tools to dramatically scale FV will be narrowly scoped tools that are tightly integrated into
existing workflows generating formally verified software. This will sidestep awareness/training
bottlenecks, and initialize a virtuous cycle in which tool use creates more formally verified
systems which can serve as training data to improve the tools.

Practicalities and Challenges of Scaling Formal Verification

Formal verification systems can be thought to have five main ingredients beyond those of a
traditional software development project:

1. Logical framework - this is an underlying meta-language for defining, computing in, and
reasoning in domain-specific languages or logics. The logical framework could be
considered for formal verification what the programming language (e.g. C, Rust, JavaScript,
Python) is for unverified software development. A particular logical framework may not be
the universal best choice for verifying all programming projects, but will be generally
reusable and is not project specific. In this toolchain, we will consider two kinds of logical
frameworks:11

○ Auto-active lower-order frameworks, implemented by automated theorem
provers or heuristics-based verification-aware languages (e.g. Dafny, Frama-C,
Why3, Verus, Liquid Haskell)

○ Expressive higher-order frameworks, implemented by interactive theorem
provers or proof assistants (e.g. Coq, Lean, Isabelle, HOL, F-star).

2. Domain specific logic - this is a collection of concepts, functions, relations and axioms for
the application domain, defined within a logical framework. The domain specific logic could
be considered for formal verification what the domain-specific software library (e.g. PyTorch
for neural networks, Django for web applications) is in a programming framework (e.g.
Python in the case of PyTorch and Django), and should be similarly flexible across projects
without there being a universal optimum for all projects. (These software libraries are
sometimes called “frameworks” in software engineering, but we avoid this terminology to
prevent confusion with logical frameworks.) In a formal verification project, several domain

11 Modal logics, which form a rich class of expressive frameworks, also play an important role in formal verification. They can be modeled in the K

Framework or in dependently typed languages. Unfortunately, we will not have the bandwidth to explore them in this Toolchain.

6

specific logics may be employed, including a specification logic and an implementation
logic, some of which may themselves be programming languages. For example, the
CompCert project12 involves at least eight intermediate languages such as Clight, Cminor
and Mach. Here, the languages are embedded in a larger logical framework, namely Coq.
Examples include the libraries fiat-crypto (Coq) and ValeCrypt (F*).

Proof

Fig. 1. An example of a specification, a proof and an implementation from the fiat-crypto library in Coq.

3. Specifications - this is the list of properties against which the software will be validated.
The specifications must capture the required functionality, describing states of the program
and/or properties of program outputs. For example, in Figure 1 above, the specification of
the base_25_5_mul function asks that the output fg of the function satisfy some equation
in modular arithmetic involving the inputs f and g.

4. Proofs - this is essentially a sound, formal mathematical argument mapping from
assumptions and axioms to properties in the specification. A deterministic sometimes-small
program (i.e. a proof checker) can check the proof to verify that the implementation satisfies
the specification. For example, the above Figure 1 shows the script for a proof of the
existence of the output of the base_25_5_mul function which was specified above. The
script produces a proof term (not shown) which can be verified by a proof-checker.

5. Implementations - this is the software code itself. It is written in a domain specific
language or logic that is dependent on the choice of logical framework, and is optimized for
performance, while still satisfying the specifications. Often, the implementation has a type

12 https://compcert.org/

7

https://compcert.org/

signature that is a simplification of its specification, and a type checker verifies that the
implementation has the right type. In practice, the implementation refers to the source code,
rather than the compiled executable. For example, the above Figure 1 shows an
implementation of the base_25_5_mul function of type (tuple Z 10)->(tuple Z

10)->(tuple Z 10) that was extracted from the proof term (not shown).

Fig 2. The components (dark green) of a formally verified system, as well as the choices of framework
and logics (light green). Gray boxes show tools for transforming (→) or validating (↔) components.

Figure 2 illustrates the five ingredients for a formally verified system, as well as the
relationships between them. The figure also shows other ingredients and steps common to
traditional unverified software. First, software developers bring intent for what the software
should do and may generate documentation, both expressed in natural language. The
documentation often contains a high-level description of the software implementation. Second,
software deployments involve compiling the implementation to an executable. The properties of
the executable itself are described in an interface.

The naive solution to automate formal verification is to design a single system that takes in
natural language and outputs a specification, implementation, and proof. However, this is
unlikely to efficiently produce useful verified software, because creation of the specification,
implementation, and proof require a lot of human feedback. Early on, human feedback will be
necessary to support insufficient ML capabilities. However, even on longer timescales, human
feedback may be necessary to follow evolving requirements and implementation trade-offs (e.g.
memory vs bandwidth utilization).

Even incorporating human feedback is challenging as there is no “single universal workflow”
followed by all formal verification projects. Instead, different projects will start with different
initial artifacts: legacy code, existing codebases, or simply a desire to build and verify a new
codebase.

8

As a result, tools must integrate into practical engineering workflows to achieve impact, and
must be designed to do so. Software engineering rarely starts with an empty directory, and is
instead more often bug fixes and feature additions to an existing codebase. Building a formally
verified codebase similarly will have some features to be added and validated iteratively and
incrementally. A successful tool must provide value inside this iterative step. As a result, we
expect the best AI tools for FV will be highly modular and flexible enough to be used in any
workflow, yet composable into common workflows.

Strategy

Overview of Application Workflow

Before identifying the specific tools, we identify five themes that will help organize the tools.

1. Modeling. Here assumptions framing the problem itself are encoded as part of the
foundation of the formal specification. The world model provides a formal language for
defining specifications, implementations and proofs. The model consists of

a. A logical framework, and
b. A domain specific logic (DSL), which includes a syntax for a specification logic

Instead of using an existing framework and DSL, these could be generated via:
c. Natural language documentation and prompts
d. Legacy code bases, possibly in an outdated programming language
e. An executable program that takes input, produces output, and can be reset.

While tools to generate a framework would be highly general, tools for building a DSL
might be specific to the framework in which they are intended to operate

2. Specification. This theme includes tools for users to iteratively generate, better
understand, and refine a specification.

3. Generation. This theme includes tools for users to iteratively construct, improve, and
update verified programs and proofs for the specification.

4. Review. This toolchain lists no tools in this theme, because proofs can be easily checked
by a small, highly general kernel for correctness.

9

Different groups of users, such as language designers, proof engineers, software developers and
application users, will interact with the software platforms that facilitate this workflow.

Overview of Tools

In this toolchain, we delve into the Modeling, Specification and Generation themes of the
application workflow named above, and identify specific tools to facilitate formalization
workflows. We assume that the proof-checkers and system deployments are mature and fixed,
and thus will not be exploring the Review theme of the workflow.

The figure above shows the different tools of the toolchain, organized by themes. We give a brief
description of each tool below.

Modeling
● WorldModel - Connect specification to logical frameworks and domain specific logics
● LegacyCode - Connect legacy code to documentation and executables
● InterAgent - Collaborative information exchange between human and AI agents
● InterFramework - Transpilation between logical frameworks

Specification
● Autoformalization - Convert natural language to formal languages
● Autoinformalization - Convert formal languages to natural languages
● Implementation2Spec - Convert code implementations to formal specification
● InputOutput2Spec - Input/output pairs from an executable to formal specifications

Generation
● Spec2Implementation - Generate an implementation and proof from a specification.

This can be separated down into two paths:

10

○ GenerateAndCheck - Generating implementations for autoverification in
auto-active frameworks

○ CorrectByConstruction - Generating implementations and proofs jointly in
expressive frameworks

● ProgramRepair - Repairing a program or proof that does not fit a given specification
● ProgramEquivalence - Determine if two programs have equivalent or divergent behavior.

Building Specific Workflows from Tools

The Formalize Workflow

In this workflow, we formalize a legacy codebase by adding specifications and proofs.

1. Modeling. User provides a software system to characterize based on one or more of:
a. Legacy code, with optional documentation.
b. An executable program that takes input, produces output, and can be reset. This

optionally includes documentation. Source code is either provided or generated
from a decompiler.

2. Specification. User generates and iteratively refines a spec via the following user-tool
collaborations:

a. Autoformalization, Implementation2Spec, and InputOutput2Spec
automatically generate a formal specification (or update an existing spec) based
on the resources provided during Modeling.

b. Autoinformalization translates the formal spec into human readable
format.

c. The user evaluates and improves the spec’s correctness and completeness,
working interactively with tools.

3. Generation. User iteratively constructs a verified program for the spec. This involves the
following user-tool collaborations:

a. Spec2Implementation synthesizes a program from the spec, doing verified
synthesis where possible, unverified synthesis as a fallback, and providing
counterexamples where correct synthesis is not possible

b. Existing legacy code is used as a prompt for guiding the synthesis process
c. ProgramRepair fixes issues that occur during synthesis
d. ProgramEquivalence checks if the synthesized program has the same

behavior as the legacy code, and prompts the user to accept or reject any
divergent behavior if the specifications are still met

e. The user reviews and improves the performance of the synthesis results and
revises the spec as needed, working interactively with tools.

11

f. The user may switch frequently between Step 2 and Step 3
4. Review. The proof is checked by a small kernel for correctness. The verified

implementations replace legacy implementations incrementally in production systems

The Construct Workflow

In this workflow, a formally-verified software system is constructed from just the specifications.
Implementations and proofs are jointly built, possibly through refinement.

1. Modeling. The user provides an informal description of the system components and the
specification of each component.

2. Specification. Formal specifications are generated from the user prompts.
a. Autoformalization produces candidate formal specifications
b. Autoinformalization translates the formal spec into a human readable

format while InterAgent helps convey insights between the user and the tool.
c. The user evaluates and improves the spec’s correctness and completeness,

working interactively with tools
3. Generation. User iteratively constructs a verified program for the spec. This involves the

following user-tool collaborations:
a. Spec2Implementation synthesizes a program from the spec, doing verified

synthesis where possible, unverified synthesis as a fallback, and providing
counterexamples where correct synthesis is not possible

b. Existing legacy code is used as a prompt for guiding the synthesis process
c. ProgramRepair fixes issues that occur during synthesis
d. User reviews and improves the performance of the synthesis results and revises

the spec as needed, working interactively with tools
e. The user may switch frequently between Step 2 and Step 3

4. Review. The proof is checked by a small kernel for correctness. The verified
implementations are deployed in production systems

The Translate Workflow

In this workflow, we start with legacy code in an outdated programming language, and want to
construct a verified software system in a new logical framework and domain specific logic. We
generate specifications, implementations and proofs by using the legacy codebase as a guide.

1. Modeling. User provides legacy codebase, documentation, and possibly executable
programs, and choses the target logical framework and domain specific logic.

2. Specification. User iteratively refines a spec via the following user-tool collaborations:

12

a. Autoformalization, Implementation2Spec, and InputOutput2Spec
automatically generate a formal specification (or update an existing spec) based
on the resources provided in Step 1

b. Autoinformalization translates the formal spec into human readable
format.Formal specifications are produced by autoformalization

c. The user evaluates and improves the spec’s correctness and completeness,
working interactively with tools

3. Generation. User iteratively constructs a verified program for the spec.
a. Spec2Implementation synthesizes a program from the spec, doing verified

synthesis where possible, unverified synthesis as a fallback, and providing
counterexamples where correct synthesis is not possible

b. Existing legacy code is used as a prompt for guiding the synthesis process
c. ProgramRepair fixes issues that occur during synthesis
d. The user may use ProgramEquivalence to check if the synthesized program

has the same behavior as the legacy code, and possibly accept any divergent
behavior if the specifications are still met

e. User reviews and improves the performance of the synthesis results and revises
the spec as needed, working interactively with tools

f. The user may switch frequently between Step 2 and Step 3
4. Review. The proof is checked by a small kernel for correctness. The verified

implementations are deployed in production systems

Key to different types of projects:

Note: all tools start with a table of the following information. This information is reflected with
additional cost breakdown in Roadmap Project Costs

Theme Tool Description Category MVP Cost ($k) Personnel
required

Duration
(mo)

The category of each tool will be either

- Tech transfer: here the probability distribution for any of resources (e.g. cost, time, or
talent) needed to complete the project is believed to be a narrow distribution

- Derisking: here the probability distribution of resources needed is somewhat broad
- Exploratory: here there is a long right tail on the distribution of resources needed

The other data points [Cost, Duration, and Personnel required] are the estimated median of each
distribution in order to achieve a useful polished proof of concept.

13

https://docs.google.com/spreadsheets/d/1krnpl57CrkhgDVGC3wMlxxx1pviFX4o1oWaVtEc2IvE/edit#gid=0

Summary of Project Cost Estimates

Theme Tool Description Category
MVP
Cost ($k)

Personnel
required

Duration
(mo)

Modeling WorldModel Case studies of logical frameworks and domain specific logics Transfer 250 1 Engineer 12

Modeling LegacyCode Case studies of legacy codes, documentations and executables Transfer 250 1 Engineer 12

Modeling InterAgent Collaboration between human and AI agents Transfer 600 2 Engineers 12

Modeling InterFramework Transpilation between logical frameworks Transfer 300 1 Engineer 12

Specification Autoformalization Convert natural language to formal languages Transfer 600 2 Engineers 12

Specification Autoinformalization Convert formal languages to natural languages Transfer 300 1 Engineer 12

Specification Implementation2Spec Code implementations to formal specification Derisk 300 1 Postdoc 12

Specification InputOutput2Spec Input/output pairs from an executable to formal specifications Derisk 300 1 Postdoc 12

Generation GenerateAndCheck
Generating implementations for autoverification in auto-active
frameworks Derisk 600 2 Postdocs 12

Generation CorrectByConstruction
Generating implementations and proofs jointly in expressive
frameworks Explore 1200 2 Postdocs 24

Generation ProgramRepair Reconcile a divergence in program, proof, and specification Transfer 300 1 Engineer 12

Generation ProgramEquivalence Determine if two programs have equivalent or divergent behavior. Explore 1200 2 Postdocs 24

Total 6,200

Note: some individual projects have a range of costs depending on the solution path; this lists the lower bound of each range to create
the most minimum viable product (MVP). Here we define an MVP as a tool (likely with a polished API) that can be used to solve an
arbitrarily challenging problem by decomposing it into smaller problems with more user interaction.

The linked document also lists the current Technology Readiness Level, the level we hope to reach byRoadmap Project Costs
end-of-2024, and the level that we believe could be achieved for the MVP cost.

14

https://docs.google.com/spreadsheets/d/1krnpl57CrkhgDVGC3wMlxxx1pviFX4o1oWaVtEc2IvE/edit#gid=0

The Modeling Theme

Challenges

● There are many examples of formally verified software systems (e.g. CompCert, seL4),
but most of them were developed from scratch rather than verifying an existing code
base. One key reason is that it is more difficult to prove that an existing implementation
is correct than to construct a new implementation whose structure makes verification
easy. Additionally, legacy code is often written in outdated programming languages that
do not have support for defining specifications. A different logical framework is
therefore needed and the new verified codebase is then built from the bottom up.

● With AI-assistance for formal verification, we no longer need to start from nothing. The
legacy code base provides both training data for unsupervised learning and prompts for
zero-shot generation, and will improve the compatibility of suggestions by the AI model
to the verification task at hand. The problem of collecting legacy codebases and their
verified counterparts will be explored in the LegacyCode tool.

● A formal verification project begins with a suitable choice of logical framework and a
description of the logic of the application domain in that framework. Domain specific
logics let us work within the confines and logic of the domain (e.g. power grid security,
sensor network security, air vehicle security, programming languages, hardware
languages) without worrying about how they transpile to other programming languages
or compile to executables in hardware languages. For example, in PyTorch, users can
define neural networks as symbolic maps between tensors, without being concerned
about how they eventually compile into efficient code for inference or training that is
optimized on the available hardware.

● When querying AI models for formal versions of software specifications, we need to feed
the model with descriptions of the world model, i.e. the logical framework and the
domain specific logic. The problem of collecting frameworks and logics for training and
for retrieval augmentation will be addressed in the WorldModel tool.

● The smooth exchange of contextual information between human agents and AI systems,
expressed in formal and informal terms as needed, is a key to scalability of AI-assisted
formal verification and code synthesis. The InterAgent tool looks into the problem of
facilitating this exchange between humans, AI systems and proof assistants.

15

● There are many mathematical libraries and verified solutions in classical frameworks
such as Coq and Isabelle. As newer and more powerful frameworks such as Lean are
released, it helps to transpile existing libraries into the new framework. This problem
will be explored in the InterFramework tool.

● Integrated development environments, such as VS Code and Lean, play an important
role in facilitating the interactions and transpilations which are explored in the
InterAgent and InterFramework tools.

16

Modeling | WorldModel
Case studies of logical frameworks and domain specific logics

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Modeling WorldModel
Case studies of logical frameworks
and domain specific logics Transfer 250 1 Engineer 12

Problem

Logical frameworks and domain specific logics are essential for the modeling of ontologies,
functions and relations, which are in turn used to define code specifications, implementations
and proofs in an application domain. Collecting these frameworks and logics will assist
language designers in developing new ones for different application domains. The information
can also be used as training data or as reference documents for retrieval augmentation.

In a particular framework, we can curate a library of canonical definitions of domain specific
logics as a foundation for developing more complex logics and for serving new application
domains. Such a code library will be analogous to the mathematical library mathlib in the
Lean programming language that has become a catalyst for modern theorem proving.

Plan

Here are some well-known examples of frameworks and logics for their application domains.

● DARPA High-Assurance Cyber Military Systems (HACMS)13,14

● ANSI/ISO C Specification Language (ACSL) for Frama-C15

● Project Everest: Provably Secure Communication Software16

Deliverables
A website or git repository containing examples of domain specific logics, grouped according to
their underlying logical framework17. These should be sufficient to train any AI tools to output
structured data in that framework (possibly assisted by, for example, syntax checkers).

17 The $250k estimated for this tool covers the construction of a specification library speclib for Lean that contains definitions of crucial safety and

security specifications, the same way mathlib contains definitions of important graduate-level math concepts.

16 https://project-everest.github.io/

15 https://frama-c.com/html/acsl.html

14 https://loonwerks.com/publications/pdf/cofer2018computermag.pdf

13 https://www.darpa.mil/program/high-assurance-cyber-military-systems

17

https://project-everest.github.io/
https://frama-c.com/html/acsl.html
https://loonwerks.com/publications/pdf/cofer2018computermag.pdf
https://www.darpa.mil/program/high-assurance-cyber-military-systems

Modeling | LegacyCode
Case studies of legacy codes, documentations and executable programs

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Modeling LegacyCode
Case studies of legacy codes,
documentations and executables Transfer 250 1 Engineer 12

Problem

The goal is to create datasets of legacy source code, documentation and executable programs for
research. It will also be helpful to map some of these legacy datasets to formal specifications,
implementations and proofs. Such a collection will provide language designers and proof
engineers with user-defined reference problems as well as supply AI algorithms with training
data for fine-tuning off-the-shelf models. As more legacy codes are verified with AI-assistance,
they will be added as examples to this collection together with their verified counterparts.

Plan

Here are some examples of datasets and benchmarks that could be useful.

● IBM has a dataset CodeNet that seems potentially helpful and is referenced in this
blogpost on Project Minerva for Modernization that targets microservices. It is a large
dataset aimed at teaching AI to code, it consists of some 14M code samples and about
500M lines of code in more than 55 different programming languages, from modern ones
like C++, Java, Python, and Go to legacy languages like COBOL, Pascal, and FORTRAN.

● This blogpost references a playground for refactoring a legacy web application that
calculates the prices of ski lift passes, which could be a test for AI-assisted refactoring
and formal verification. See also this collection of katas for practicing refactoring.

● miniCodeProps is a benchmark with 177 formal implementations and specifications in
the proof assistant Lean which is aimed at the problem of finding proofs that the
implementations satisfy their specifications.

● Project Everest may have a list of legacy codebases which need to be verified before we
have a fully verified implementation of HTTPS.

● GitHub more generally may be a valuable source of unverified legacy source code if
Implementation2Spec can be used to generate formal specifications to match the

18

https://research.ibm.com/blog/codenet-ai-for-code
https://research.ibm.com/blog/refactoring-legacy-software
https://understandlegacycode.com/blog/can-ai-refactor-legacy-code/
https://github.com/martinsson/Refactoring-Kata-Lift-Pass-Pricing
https://kata-log.rocks/refactoring
https://arxiv.org/abs/2406.11915
https://project-everest.github.io/
https://github.com/

source code and documentation. The value may likely be magnified by the project’s
interest and familiarity in formalization, as well as their willingness to participate and
give feedback on the specification and verification process.

● Clover and DafnyBench include many formally specified and verified programs in Dafny,
particularly intended for training ML systems.

Deliverables
A website or git repository containing examples of legacy codebases and possibly their verified
counterparts. Each legacy function should preferably be paired with its verified twin. These
datasets should be sufficient to train AI tools to convert between source code and
documentation (possibly assisted by, for example, syntax- or type-checkers).

19

https://arxiv.org/abs/2310.17807
https://arxiv.org/abs/2406.08467

Modeling | InterAgent
Collaboration between human and AI agents

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Modeling InterAgent
Collaboration between human
and AI agents Transfer 600 2 Engineers 12

Problem

The goal is to build an interface that facilitates interactions between human agents, AI systems
and logical frameworks. The interface also allows specifications, implementations and proofs to
evolve over time, and manages the different versions and the dependencies between them. At a
later stage, human users should be able to explore implementations that are generated from the
specifications. The interface should be usable by users who have little experience with formal
verification or theorem proving, and have affordances for expert users at the same time.

This interface could be built as an extension of an existing IDE (integrated development
environment, such as VS Code or Lean) with support for the following components and services:

1. Specifications and Implementations. They can be partial or full. By allowing partial
specifications and implementations, humans can be ambiguous about parameters that
they are unsure about, and let the AI system or logical framework fill in the blanks.

2. Proof diagram. For each full specification, we want to explore possible implementations
and proofs. Ideally, we should store partial proofs as we construct them step by step in a
directed acyclic graph which we call the proof diagram. The diagram will store:

a. Proof states - subgoals generated by applying tactics to the original specification
b. Proof scripts - lists of tactics used to transition between proof states
c. Proof terms - the partial proof that will eventually be checked by the kernel

3. Documentation. This is a natural language version of the specifications and
implementations that can be understood by humans.

4. Version control. Different versions of the specification, implementation and proofs,
including unverified legacy code.

5. Dependency management. As we create libraries of definitions, theorems and tactics,
the publishing and the dependencies between libraries are carefully managed.

20

Besides using AI-assistance for constructing specifications, implementations or proofs, we also
ask that the interface translate the above formal constructs as well as error messages into
human-readable sentences so that non-expert users can understand them.

Plan

The Open Agency Model recommends the separation of roles which could be fulfilled by human
agents or AI systems in world modeling, problem specification, solution generation and solution
verification, to create safer sociotechnical systems. We will be employing this strategy as far as
possible in developing the Toolchain and an InterAgent interface.

Note that there isn't necessarily one solution interface that will solve all problems. We could
have several potential interfaces depending on the use-cases, and it definitely isn't clear what
these potential interfaces should look like at this point. For a start, the evaluation framework
CodeEditorBench assesses the performance of LLMs in code editing tasks, including debugging,
translating, polishing, and requirement switching. In the InterAgent project, we will explore the
constraints and opportunities in this space, and more.

When working with verification-aware programming languages such as Dafny, Frama-C and
Verus, it makes sense to extend the existing IDEs with AI assistance. However, the duplication
of work needed to make this happen for different IDEs makes it hard to scale in the long run.

For more expressive logical frameworks such as dependent type theory, the Lean IDE is a
promising base on top of which to build AI-enabled capabilities, because of the many existing
features such as Copilot and LeanDojo and because of the ease of building extensions.

21

https://arxiv.org/abs/2404.03543

We could also extend a generic IDE, such as the structure editor Hazel18, that makes it easy to
work across different logical frameworks. AI-assisted code synthesis could in future reduce the
effort required to write such extensions.

Translation between natural language and formal language will feature dominantly in the
solution interface, to ease communications between human users and logical frameworks. The
Autoformalization and Autoinformalization tools will play important roles here.

The formal specifications of a software system can be considered the cornerstone of the entire
development process, potentially holding even greater importance than the implementations
and proofs themselves. This is because these specifications serve as the guiding force behind the
design and development of the other two components. Given this critical role, it's essential for
the InterAgent tool to prioritize the accuracy and clarity of these formal specifications. The tool
must ensure that the specifications precisely capture the user's intentions, especially when the
user lacks technical expertise in formal methods.

The above diagram illustrates three different ways in which the formal specification might fail

to accurately capture what the user truly wants from the software system: underspecification,

misspecification, and overspecification. The InterAgent tool needs to effectively communicate

any discrepancies between the formal specification and the user's original intent. One

particularly powerful approach to highlighting these discrepancies is through the use of

counterexamples. This method involves presenting the user with a concrete instance - be it an

implementation, an input, or an output - that adheres to the formal specification as written, but

clearly violates the user's intended functionality or behavior. This method of explanation not

only helps in identifying specification errors but also aids in refining the specifications.

18 https://hazel.org/

22

https://hazel.org/

Deliverables

Extensions to well-known logical frameworks that support AI-assisted formal verification and
code synthesis. Specifically, the extensions should allow views and edits of the specifications,
implementations and proof diagrams, as well as their versions and dependencies. For instance,
the Lean proof assistant directly visualizes most of them, except for implementations.

The extensions should also integrate:

● The Autoformalization tool for converting natural language intents to formal specs
● The Autoinformalization tool for displaying codes and errors in natural language
● The Implementation2Spec tool for converting implementations to specs
● The InputOutput2Spec tool for refining specs using input-output pairs
● The ProgramRepair tool for fixing broken implementations and proofs
● The ProgramEquivalence tool for checking equivalence of implementations.

For auto-active frameworks, the extensions should additionally integrate

● The GenerateAndCheck tool for generating implementations from specifications.

For expressive frameworks, the extensions should additionally integrate

● The CorrectByConstruction tool for refinement-based code synthesis.

To enable the same tools and AI models to be used across different IDEs, the extensions should
interface with the tools using one of these methods:

● An API server that is hosted either locally or globally
● An interoperable library such as OpenNMT’s CTranslate2
● Tool-specific SDKs (software development kits) for different platforms

23

Modeling | InterFramework
Transpilation between logical frameworks

Theme Tool Description Category MVP Cost
($k)

Personnel
required

Duration
(mo)

Modeling InterFramework
Transpilation between
logical frameworks Transfer 300 1 Engineer 12

Problem

We want to leverage on the rich mathematical and software verification libraries in mature
logical frameworks such as Coq and Isabelle for newer logical frameworks such as Lean. The
problem is to perform idiomatic translation of codes from one logical framework to another, i.e.
translations which feel natural in the target language, such as employing commonly-used forms
and importing widely-accepted libraries. The translation source may include specifications,
implementations, proofs, and even tactics which are used for generating proofs. If successful,
the tool will accelerate the development of libraries for newer frameworks, and facilitate
knowledge exchange between existing ones.

Plan

Experiments show that GPT4o and Claude Sonnet do well in translating source codes from Coq
to Lean, although the output tends to be in an older version of Lean. Building on this initial
success, we may take a theory developed through a set of libraries in one logical framework, and
convert that theory to another framework using one pass of an LLM. Any errors or gaps in the
translation can then be patched with human feedback and some additional help from the LLM.

One challenge is that tactics in proof scripts often do not translate nicely, because a tactic in the
source framework may not have a counterpart in the target framework. To solve this problem,
we could perhaps translate just the proof term and not the proof script, or we could design new
tactics in the target framework (with AI-assistance) to mirror those in the source framework.

Deliverables

An API that takes as inputs

● Signature of a source logical framework (or invocation of an established framework by
name and version, or reference to an established syntax checker)

24

● Signature of a target logical framework (or invocation of an established framework by
name and version, or reference to an established syntax checker)

● Source code (specification, implementation, or proof) in the source logical framework

And generates the following outputs

● Translation of the input source code that satisfies the provided target signature.

25

The Specification Theme

Challenge

● At the heart of AI-assisted formal verification and code synthesis is the translation
between natural languages and formal languages of everything from specifications and
proofs to error messages and documentations.

● Besides converting between natural sentences and formal statements, we will also need
tools for computing their vector embeddings. These embeddings will be used in other
tools, such as CorrectByConstruction where we might ask how similar a new
specification is to existing specifications so that we can choose an appropriate tactic for
the next step in code synthesis.

● Given an implementation, deciding what its specification should be depends on the
intent of its human author. The specification could be about its behavior, such as
preconditions or assumptions about its inputs, and postconditions or assertions about its
outputs. The specification could also be about its properties, e.g. the absence of certain
side-effects such as changes to the database or calls to external APIs, or a bound on the
largest value computed by the intermediate steps of an algorithm. Behavior-based specs
are well-managed by auto-active frameworks, while property-based specs are better
formulated in expressive frameworks.

● To train effective AI models for converting implementations or documentations to
specifications, we need high quality datasets where the specifications are aligned with
the implementations and documentations. Unsupervised learning on large corpuses of
legacy code can help. As more examples are generated through AI-assistance and human
curation, they can be added to the training datasets to improve future models.

26

State of the Art

● Autoformalization and autoinformalization can be approximated to some extent by
existing large language models such as GPT4, Llama and Claude.

● Autoformalization, in the general form of an algorithm that automatically learns to read
natural language content and turns it into abstract, machine verifiable formalization, is
discussed in great depth in Szegedy’s position paper. In this toolchain, we will focus
however on simpler special cases, such as converting the natural language statement of a
program’s intent into a formal specification.

● The promise of autoformalization and autoinformalization for helping mathematicians
explore strange new theories with confidence is discussed in Shulman’s position paper19.

● Fine-Tuning Language Models Using Formal Methods Feedback (2023) - Training
language models to generate correct control policies. The language model is not required
to produce formal outputs. Instead, the model is prompted to produce output that is
aligned with a fixed vocabulary, and the output is then converted into the formal version.

● ARSENAL: Automatic Requirements Specification Extraction from Natural Language
(2014) - Language models prior to GPT were already capable of specification extraction
to some extent. The Stanford Typed Dependency Parser plays an important role.

19 Strange new universes: proof assistants and synthetic foundations, Michael Shulman, 2024.

27

https://dl.acm.org/doi/abs/10.1007/978-3-030-53518-6_1
https://openreview.net/pdf?id=fWkTKHWfie
https://arxiv.org/abs/1403.3142
https://www.ams.org/journals/bull/2024-61-02/S0273-0979-2024-01830-8/S0273-0979-2024-01830-8.pdf

Specification | Autoformalization
From natural languages to formal languages

Theme Tool Description Category MVP Cost
($k)

Personnel
required

Duration
(mo)

Specification Autoformalization

Convert natural
language to formal
languages Transfer 600 2 Engineers 12

Problem

We need a tool that takes natural language descriptions of structures (e.g. specifications,
implementations, proofs) and reliably generates versions of the structures in a specified formal
language. The syntax of the formal language will be described by an appropriate description of
the syntax (either explicitly in, for instance Backus Naur form, or by invoking an existing syntax,
like “use Lean4”), and outputs of the tool should be checked against this signature.

For instance, we will be interested in natural language input in the form of documentation for
an API or comments in the source code. The document could contain information about the
structure of inputs and outputs to the API, and a description of what the API does. We may
require the autoformalization tool to generate a formal specification of the API in some chosen
domain specific logic.

Plan

Experiments have demonstrated success for simple examples (searching and sorting lists) using
models like GPT-4o and Claude Sonnet.

● Microsoft TypeChat (2023) seems to be fairly reliable in using an LLM to produce JSON
output that conforms to a TypeScript type or schema.

● MiniF2F (2021): a cross-system benchmark for formal Olympiad-level mathematics. Can
we develop a similar benchmark for program synthesis?

● Autoformalization with large language models (2022) performs autoformalization on the
MiniF2F benchmark via LLMs.

● Formalization of standards. Using transformers models, formalize 5G standards or
clinical guidelines from natural language descriptions. This is unpublished work by
Stéphane Graham-Lengrand (SRI).

28

https://microsoft.github.io/TypeChat/blog/introducing-typechat/
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2205.12615

More complex examples may be possible with additional attempts or fine-tuning.

● As a first attempt, use a language model to generate formal versions of the structure, and
check the output against the syntax description, possibly by using a publicly available
syntax checker. If the output fails the check, then have the LLM try multiple times and
give up and announce failure after a maximum number of tries, providing the last failed
output to the user so that the user can fix it herself.

● As a second attempt, syntax errors in the generated output could be fed back to the LLM,
so that the LLM can attempt to fix the errors.

● Prompt engineering, few-shot learning, fine-tuning, or more sophisticated
chain-of-thought strategies could likely better exploit capabilities of existing models.

● Develop a tactical metalanguage for generating and manipulating formal output, e.g.
“create an empty list; append x to the head; append y to the head; append z to the tail”.
Train an LLM or reinforcement learner to generate formal outputs via tactics.

● Use Talia Ringer’s work on proof repair to fix errors in the formal outputs.

Deliverables

An API that takes as inputs

● Signature of a formal language (or invocation of an established language by name and
version, or reference to an established syntax checker)

● Natural language description of a structure to convert (e.g. specification,
implementation, proof)

And generates the following outputs

● Formal version of the structure that satisfies the provided signature.

Challenges

When discussing AI for formal verification, a question is sometimes raised whether or not that
humans cannot effectively provide sufficient detail for a specification in natural language.
While we believe this is a hypothesis worth testing, the InterAgent tool is also intended to
provide enhanced human-in-the-loop feedback when generating more sophisticated
specifications.

29

https://homes.cs.washington.edu/~djg/theses/ringer_dissertation.pdf

Specification | Autoinformalization
From formal languages to natural languages

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Specification Autoinformalization

Convert formal
languages to
natural languages Transfer 300 1 Engineer 12

Problem

We need to translate formal specifications and implementations to a natural language
representation that humans can understand and engage. We ask also that the tool be capable of
answering formal queries in natural language, such as describing the difference between two
formal specifications20.

Plan

Initial experiments show that GPT4o and Claude Sonnet are fairly competent at deciphering
what a formal specification or implementation is doing, especially if the underlying logical
framework (e.g. Coq, Lean, Dafny) is well-known.

To check if the natural language output faithfully carries the full meaning of the formal input,
we can convert the output to a formal version via Autoformalization and to compare this
formal version with the original input. This consistency test was used in the Clover project21.

Deliverables

An API that takes as inputs

● Formal version of a structure to convert (e.g. specification, implementation, proof)

And generates the following outputs

● Natural language description of the structure

21 Clover: Closed-Loop Verifiable Code Generation (2023), Chuyue Sun, Ying Sheng, Oded Padon, Clark Barrett.

20 Sottile, Matt. Private communications, Lawrence-Livermore National Laboratories, Mar 2024.

30

https://arxiv.org/abs/2310.17807

Specification | Implementation2Spec
Code implementations to formal specification

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Specification
Implementation
2Spec

Code implementations
to formal specification Derisk 300 1 Postdoc 12

Problem

Develop an interactive AI system that generates formal specifications for legacy code. The AI
system should take a domain specific logic and a function in the legacy codebase as inputs, and
suggest preconditions, postconditions and invariants for the function. The system should refine
the specifications iteratively with feedback from human users. The generated specification
should be verified against a signature or syntax checker for the domain logic.

With further prompts from users, it may also suggest additional properties that the function
should satisfy, e.g. bounds on the value computed by intermediate steps in the function. The AI
system may suggest new definitions to be added to the domain specific logic, so that the
specifications can be stated more clearly.

Plan

Initial experiments show that LLMs such as GPT4 are reliable at recognizing simple functions
(e.g. maximum of an array, binary search) and generating preconditions, postconditions and
invariants for the function in Dafny, possibly because these functions and their specifications
are included in its training data. The same LLMs are also capable of generating higher-order
formal specifications (e.g. the functorial function is always positive) in Lean, but prompts from
human users (e.g. “show that the functorial function is positive”) are needed.

The next step is to use lightweight fine-tuning techniques, such as QLoRa, for updating
off-the-shelf language models with changes in a core domain specific logic (e.g. a security
library) or in the logical framework (e.g. Lean version 3 to version 4). We need to explore when
retrieval augmentation is not enough and fine-tuning is needed to improve reliability.

Matt Sottile (LLNL) has suggested that this tool be tested on large-scale codebases, such as the
compiler for the LLVM IR (Intermediate Representation), and not just small-scale ones. Samuel
Pollard (Sandia) also gave ideas for codebases for testing, such as CubeSAT, CAN (Control Area
Network) bus protocols, HFODD, Xyce, and Rust libraries.

31

https://gitlab.com/tudsat-cubesat
https://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html
https://xyce.sandia.gov/

Deliverables

An interactive extension to an existing logical framework (e.g. Lean, Verus) that takes as inputs

● Implementation of a function from a legacy codebase
● Domain spec logic in the form of a library
● (Optional) Natural language requirements or feedback
● (Optional) Prior versions of a formal specification

And generates the following outputs

● Suggested formal specifications for the function implementation. Proof that the
implementation satisfies the specification is not required.

32

Specification | InputOutput2Spec
Input/output pairs from an executable to formal specifications

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Specification
InputOutput2
Spec

Input/output pairs from an
executable to formal
specifications Derisk 300 1 Postdoc 12

Problem

Refine a given specification using a compiled executable that satisfies the specification, by
experimenting with inputs and their observed outputs. For instance, the executable could be a
function that organizes some data values into a packet, and we could have a partial specification
for the executable that does not spell out the packet protocol. The goal then is to discover the
packet protocol, with some hints on its format. This tool should also be capable of generalizing
unit tests (given as a list of input-output requirements) to formal specifications. The tool is
important for situations where specifications are hard to infer from implementations alone.

Plan

When converting, say, a list of data values into a tabular format, LLMs have shown that they are
capable of generalizing what needs to be done from just a few input-output examples. We want
to show that they are equally capable of writing down the formal input-output relationships.

The next step is to enable the tool to choose inputs and to observe the outputs through its own
experiments. The tool may use reinforcement learning to improve at choosing the right inputs.
This experimentation should involve humans in the loop, where the humans provide oversight
on the process. Automating the experiments in this manner will save the human user time.

Deliverables

In the short run, the tool will take as inputs

● A partial specification for some function

● Input-output pairs for the function

And generate the following output

● A refinement of the specification that is consistent with the input-output pairs.

In the longer run, the tool will take an executable instead of input-put pairs. It will call the
executable in order to extract its own list of input-output pairs.

33

The Generation Theme

Challenges

● The process of generating proofs and implementations from specifications is heavily
influenced by the logical framework being used. On one end of the spectrum, we have
auto-active frameworks, such as Hoare logic and separation logic. These frameworks
contain specialized fragments of first-order logic that offer a significant advantage:
automatic determination of whether an implementation meets a given specification. In
these auto-active frameworks, algorithms are employed to verify compliance, eliminating
the need for manual proof construction. As a result, when working within such
frameworks, the focus shifts primarily to generating the implementation itself, as the
proof of its correctness is produced automatically by the system.

● On the other end of the spectrum, we have expressive frameworks, exemplified by
dependent type theories, which offer a more sophisticated approach to logical reasoning
and specification. These frameworks are built upon higher-order logics, which allow for
a greater degree of complexity and abstraction in their formulations. Unlike simpler
logical systems, these expressive frameworks permit predicates—essentially boolean
functions—to take not just elements of sets as inputs, but also entire sets and functions
themselves. This increased flexibility enables the expression of more intricate
mathematical relationships and allows for the creation of more nuanced and
comprehensive code specifications.

● However, this expressiveness comes with a trade-off. In these more complex frameworks,
the process of proving properties of implementations often cannot be fully automated.
Instead, proofs frequently require manual construction via metaprogramming actions
called tactics, demanding a deeper understanding and more hands-on approach from the
developer or mathematician. Interestingly, the interconnected nature of proofs and
implementations in these expressive frameworks sometimes leads to an unexpected
workflow: in certain cases, it may be more efficient and effective to develop the proof
and the implementation simultaneously, rather than sequentially. This joint construction
process, also known as the correct-by-correction strategy in deductive synthesis, can lead
to a more holistic understanding of the problem and solution, potentially resulting in
more robust and well-verified implementations.

● There are varying approaches to representing code implementations within a logical
framework. One method, known as shallow embedding, involves using the framework's

34

built-in programming constructs such as loops, pattern matching, and arithmetic
operations to directly construct the implementation. In contrast, deep embedding takes
a more indirect approach. This method first defines the implementation language as an
abstract data type within the logical framework. Once this abstract representation is
established, the actual implementations are then expressed as terms or instances of this
custom data type. These two techniques offer different trade-offs in terms of simplicity,
expressiveness, and the ease of reasoning about the implemented code.

● In the last two decades, proof assistants have garnered significant attention for their role
in validating intricate mathematical propositions, including the Four Color Theorem
and the Odd Order Theorem. These tools have also demonstrated their value in
facilitating large-scale collaborative efforts like the Liquid Tensor Experiment. The
remarkable achievements of proof assistants in the realm of theorem proving hint at
their potential for revolutionizing verified software development. This potential extends
across both auto-active and expressive logical frameworks, and encompasses techniques
involving shallow and deep embeddings of code. Moreover, recent advancements have
seen the integration of artificial intelligence into the field of theorem proving, yielding
encouraging outcomes22,23,24,25. This success suggests that similar AI-driven approaches
could be effectively applied to the domains of formal verification and code synthesis.

● Talia Ringer's thesis introduced the concept of Proof Engineering, drawing a parallel with
Software Engineering. Just as software engineering encompasses the creation and
ongoing maintenance of software, proof engineering extends these principles to the
realm of implementations and their associated proofs. This paradigm acknowledges that
proofs and implementations, like software, require not just initial development but also
continuous maintenance and refinement. In this Toolchain, we will examine various
tools that support both the development and maintenance aspects. On the development
side, we'll explore tools like GenerateAndCheck and CorrectByConstruction. For
maintenance, we have tools such as ProgramRepair and ProgramEquivalence.
These tools represent just the beginning of what's needed in this field. As proof
engineering continues to evolve and gain prominence, it's anticipated that an even wider
array of specialized tools will become necessary. These future tools will likely address
the unique challenges posed by verified software systems, supporting their development,
verification, and long-term maintenance in increasingly sophisticated ways.

25 A Survey on Deep Learning for Theorem Proving, Li, Z., Sun, J., Murphy, L., Su, Q., Li, Z., Zhang, X., Yang, K. and Si, X., 2024.

24 Dt-solver: Automated theorem proving with dynamic-tree sampling guided by proof-level value function, Wang et al., 2023.

23 Hypertree proof search for neural theorem proving, Lample et al., 2022.

22 Tactictoe: Learning to prove with tactics, Gauthier et al., 2021.

35

https://homes.cs.washington.edu/~djg/theses/ringer_dissertation.pdf
https://arxiv.org/abs/2404.09939
https://aclanthology.org/2023.acl-long.706/
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/1804.00596

● Legacy codebases serve a crucial function in the evolution of AI-assisted verification and
development tools. These legacy systems provide valuable insights and patterns to AI
models, much like how they guide human architects in designing new, formally verified
software systems. Specifically, these codebases serve a dual purpose: they act as training
datasets and reference documents for AI models tasked with generating
implementations and proofs. However, the proprietary nature of many of these legacy
systems presents a unique challenge. To address this, there's a need to develop AI tools
that can leverage the knowledge embedded in these codebases while simultaneously
safeguarding their confidentiality, possibly through the use of privately hosted models.

State of the Art

● Auto-active frameworks are often implemented as verification-aware programming
languages such as Dafny, Frama-C, Verus and Liquid Haskell. Under the hood,
auto-active frameworks employ SMT (Satisfiability Modulo Theories) automation to
solve complex verification problems. Expressive frameworks are often implemented as
proof assistants such as Lean, Coq, Agda, Isabelle, HOL, Why3 and F*. Some expressive
frameworks, such as Why3 and F*, contain auto-active fragments where verification of
implementations against preconditions, postconditions and invariants is automated.
Despite being cast in the expressive framework Coq, MIT’s Bedrock performs highly
automated verification of low-level programs by using techniques from separation logic.
The CakeML project employs a similar approach, providing end-to-end verification via
the HOL4 proof assistant. HOL functions are compiled to CakeML AST with proof that
behaviors are preserved in the process. A verified compiler then translates this generated
AST to machine code. Meanwhile, Charguéraud's CFML verification framework has also
been adapted to CakeML for Hoare-style verification of low-level CakeML programs.

● In recent years, the field of program synthesis has seen remarkable advancements,
particularly in the area of generating code from natural language prompts. A prominent
example of this technology is GitHub Copilot, which leverages large language models to
interpret human-written prompts and generate corresponding code implementations.
However, it's important to note that while these systems can produce functional code,
they typically do not include built-in verification mechanisms. Besides LLMs, other AI
techniques such as reinforcement-learning-guided tree search have also been employed
for program synthesis to improve the quality and relevance of generated code. These
developments represent a significant step forward in automating aspects of software
development, but they also highlight the ongoing challenges in ensuring the reliability
and correctness of AI-generated code.

36

http://adam.chlipala.net/papers/BedrockPLDI11/BedrockPLDI11.pdf
https://cakeml.org/index.html
https://cakeml.org/esop17.pdf
https://github.com/features/copilot
https://arxiv.org/pdf/1806.02932

● Deductive synthesis, a method for creating efficient implementations by transforming
simpler code forms, has its roots in the 1977 work of Burstall and Darrington. This
approach has evolved over time, integrating formal methods to give rise to the
correct-by-construction methodology. Notable examples of this evolution include the
Kestrel Institute's Specware system, and the Spiral project, which focuses on
synthesizing digital signal processing algorithms and numerical kernels.

● A significant advancement came in 2015 with the introduction of the Fiat system. The
system develops domain-specific logics (via refinement types) within the expressive Coq
framework, and leverage Coq's tactics language (via refinement rules) to largely automate
the joint creation of implementations and their proofs. This approach offers a high-level
language for specifying formal requirements while also enabling low-level optimizations
for generating efficient codes. The Fiat system has successfully synthesized formally
verified database systems and cryptographic algorithms. Pit-Claudel's thesis further
advanced the field by introducing the relational compilation framework. This work
reframed program extraction as a proof-search process, aiming to derive correct efficient
implementations from shallowly-embedded functional programs. Runge et al. have
contributed to the field by introducing block-based and trait-based strategies, which
offer greater flexibility in correct-by-construction software development.

● Chlipala et al. clarified their hypothesis that domain specific languages should be
replaced by libraries in proof assistants that mix theorem proving and programming,
allowing for modularization of functionality away from performance. In their position
paper, Appel et al. argued that in order to routinely build large verified systems out of
smaller reusable verified components, we need to design specifications which are deep,
i.e. rich, two-sided, formal and live.

● Correct-by-construction program synthesis shows great promise in enhancing software
reliability and bridging the divide between high-level specifications and efficient,
practical implementations. This approach is particularly valuable for developing critical
software systems where formal correctness guarantees are crucial. However, the
widespread adoption and application of these techniques face several hurdles. The
process requires advanced proof techniques, in-depth domain-specific knowledge, and
sophisticated automation to be practical in real-world scenarios. Further research is
necessary, such as scaling the techniques to handle larger and more complex systems,
and making the approach more accessible to developers who may not have extensive
backgrounds in formal methods.

37

https://dl.acm.org/doi/10.1145/321992.321996
https://www.kestrel.edu/research/specware/
https://www.spiral.net/index.html
http://plv.csail.mit.edu/fiat/papers/fiat-popl2015.pdf
https://github.com/mit-plv/fiat-crypto
https://dspace.mit.edu/handle/1721.1/143374
https://arxiv.org/abs/2211.15261
https://www.cs.purdue.edu/homes/bendy/Fiat/fiat-snapl.pdf
https://dspace.mit.edu/handle/1721.1/143374

Generation | (Spec2Implementation) GenerateAndCheck
Generating implementations for autoverification in auto-active frameworks

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Generation
GenerateAnd
Check

Generating implementations
for autoverification in
auto-active frameworks Derisk 600 2 Postdocs 12

Problem

The goal is to develop an AI system that generates code for a given specification in a
verification-aware programming language (e.g. Dafny). Through auto-active verification, this
code can often be checked by the logic engine without human direction. If this project succeeds,
we will have verified software systems for simple well-specified applications, e.g. accounting
systems, database lookups.

Verifier. We assume that we have a verifier V that takes in a state string S and outputs a pair
V(S) = (Z,E) where Z is the status with values in {fail, incomplete, success} and E is any
error or state message. A fail means that the state string S has failed verification and
appending additional text to the string will not help. The error message is provided in E. A
success means that the state string S has passed verification. The error message E will be
empty. An incomplete means that the state string S has failed verification but appending
additional text to the string may help. In other words, the state string S is incomplete. The
parser state is provided in E.

Interface. We want to design an AI assistant that can facilitate program synthesis via one of the
interactive platforms described in the InterAgent tool. The simplest interface is a REPL
(Read-Eval-Print Loop).

1. The interface reads a state string S from the human.
2. The verifier will evaluate the state string V(S) = (Z, E).
3. The interface will output both the status Z and any error message E to the human.
4. Repeat by returning to Step 1.

Tree Search. The dynamics of this interface unwraps into a tree of possible interactions. We
want to train an AI system that can navigate this interaction tree successfully and arrive at an
implementation that passes the check by the verifier.

38

Alternative Interfaces. If the chosen interface from the InterAgent tool is not a simple REPL,
we should expect a different space of interactions and we may need to design a different AI
model to navigate that space efficiently.

Plan

The Clover project26 and the VerMCTS project27 provides a good initial foundation for this plan.
In VerMCTS, the authors experimented with multi-step LLM-based code generation and
verification in Dafny, Coq and Lean with positive results. Similar generate-and-check ideas were
also proposed by the NuSCI research group in the context of automated planning with LLMs.
The GenerateAndCheck tool will explore having formal specifications as inputs rather than
natural language inputs, as well as the ability to do repair using error messages from the verifier.

Language Model. We incorporate a large language model L into the AI system for generating
possible action strings A from the state string S. We assume for simplicity that the string
concatenation S+A is a proposal for a new state string S’. We may also assume that a standard
prompt string P is used with the state string S as inputs to the LLM to get action strings as
outputs, i.e. A = L(P+S).

Reinforcement Learner. We train a reinforcement learner on the states S and the actions A
generated by the LLM. Given that the space of interactions for REPL is a tree, we can use Monte
Carlo Tree Search for reinforcement learning. If computing resources permit it, we could also
fine-tune the LLM using a strategy like DPO (direct preference optimization) to generate better
actions from a given state S over time.

Error Messages. If there are errors E, we will then use the LLM to generate a new corrected
state S’ from S and E. This repair step could make direct application of MCTS tricky. We could
use the ProgramRepair tool to explore alternative ways of addressing this problem.

Use-cases. Apply this plan to software components in Project Everest which are written in the
F* framework. We could train GenerateAndCheck on the batch of existing verified components,
and use the tool in developing and repairing new components. Instead of batch-training, we
could explore online learning for GenerateAndCheck, so it progressively gets better at assisting
the human in new application domains.

27 VerMCTS: Synthesizing Multi-Step Programs using a Verifier, a Large Language Model, and Tree Search, D. Brandfonbrener, S. Henniger, S. Raja, T. Prasad, C. Loughridge,
F. Cassano, S. R. Hu, J. Yang, W. E. Byrd, R. Zinkov, N. Amin, 2024.

26 Clover: Closed-Loop Verifiable Code Generation, C. Sun, Y. Sheng, O. Padon, C. Barrett, 2023.

39

https://nusci.csl.sri.com/publication/icaa23c/
https://arxiv.org/abs/2402.08147
https://arxiv.org/abs/2310.17807

Deliverables

Monthly milestones are as follows.

● M2: GenerateAndCheck generates actions from formal specs. Error messages ignored.
● M4: GenerateAndCheck incorporates error messages into choice of actions.
● M8: GenerateAndCheck performs online learning for developing new components.
● M12: Integrating GenerateAndCheck into InterAgent - the human can choose to run

GenerateAndCheck step by step, or let GenerateAndCheck pilot automatically.

At the end of the project, we should have an API that takes as inputs

● The formal specification of a desired low-level function in an auto-active framework
● A verifier for the auto-active framework

And generates as outputs

● An verified implementation that satisfies the specification.

40

Generation | (Spec2Implementation) CorrectByConstruction
Generating implementations and proofs jointly in expressive frameworks

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Generation
CorrectBy
Construction

Generating implementations
and proofs jointly in expressive
frameworks Explore 1200 2 Postdocs 24

Problem

We develop an AI system for semi-automating refinement-based synthesis in expressive logical
frameworks. The implementation is jointly generated with its proof and therefore correct by
construction. If this project succeeds, we will have a new programming paradigm for building
verified software systems with high-level architectural specifications, e.g. cryptosystems,
knowledge bases.

Trusted code base. In traditional refinement-based program synthesis, e.g. the Specware
project, the synthesis steps are chosen from a trusted database of correct constructions. As this
database grows over time, the burden of proof of its correctness grows as well. To solve this
problem, we ask that synthesis produces proofs in addition to implementations. These proofs
should be verifiable by a proof checker at the end of refinement, so only a small trusted code
base is needed, namely that of the proof checker.

Expressive frameworks and refinement-based synthesis. As we build more complex software
systems, we need to use more expressive frameworks, such as dependent type theory or
higher-order logics, for defining our specifications. Unlike verification-aware programming
languages (e.g. Dafny, Frama-C, Verus) which are auto-active frameworks with highly automated
proof generators, expressive programming languages (e.g. Lean, Coq) typically need more human
feedback in constructing proofs, and this feedback is facilitated by proof assistants. We ask that
the implementation be constructed jointly with its proof through a process of refinement.

General proof development. We ask that the refinement steps proceed by metaprogramming
actions called tactics. Tactics decompose the desired specification or goals into subgoals, and
compose proofs and implementations of the subgoals into those of the original goal. This
tactical approach puts program synthesis in the same general proof development environment
as that of mathematical theorem proving, thus allowing mathematical libraries to be applied.

41

For example, the above figure shows Fiat’s refinement-based code synthesis. On the left, we
have refinement types for synthesizing the insertion of a key-value pair into a cache. On the
right, we have the honing tactics that produce the refinements on the left.

Functionality and Performance. This correct-by-construction strategy has made it easier to
synthesize high-level code that is both functional and performant, such as the fiat-crypto library
for cryptographic arithmetic28. It is estimated that over 95% of HTTPS connections by browsers
run the generated algorithm. We ask that the proposed solution demonstrates the efficiency of
synthesized implementations.

Learning-based automation. While many simple program synthesis goals can be automated by
powerful search-based tactics, deciding which tactic to use and deciding the sequence of tactics
required for more complex synthesis goals can be challenging for non-experts. We ask that an
AI assistant be trained to provide help in the choice of tactics, performing tree-search in the
space of tactic sequences, if necessary, to find a solution.

Human-AI integration. Integrate AI assistance into the InterAgent tool, because human
feedback is much more important for this tool than, say, for the GenerateAndCheck tool.

Plan

Fiat. Using the InterFramework tool, translate the Fiat synthesis library from Coq to Lean,
because we will be using Lean extensions for AI-assisted theorem proving.

Data. We will experiment with examples in the Fiat library. The fiat-crypto library also provides
many examples for testing. The problem is deciding how to split the examples into data for

28 Simple High-Level Code For Cryptographic Arithmetic –With Proofs, Without Compromises Erbsen, A., Philipoom, J., Gross, J., Sloan, R. and Chlipala, A., 2020.

42

https://pit-claudel.fr/clement/papers/fiat-POPL15.pdf
https://github.com/mit-plv/fiat
https://github.com/mit-plv/fiat-crypto
https://jasongross.github.io/papers/2019-fiat-crypto-ieee-sp.pdf

training or inputs for prompts, and test data. For each domain, it seems appropriate to use the
earlier examples for training or prompts and to keep the later examples for testing.

VerMCTS. We will use the VerMCTS (verified Monte Carlo tree search) platform as a first
attempt at building an AI system for tactic selection for refinement-based synthesis. We can
prompt the language model to suggest refinement tactics from Fiat by feeding sample proof
scripts to the large language model as an input file.

LeanDojo. Alternatively, install LeanDojo and Lean Copilot. The suggest_tactics and
search_proof commands work well in VS Code to suggest a single tactic or a chain of tactics
for the goal at hand. You can “bring your own model” - configure Lean Copilot to use a custom
AI model, such as the VerMCTS. It is not clear from the documentation if you can feed an input
file to the underlying LLM, so it may be necessary to develop this feature.

Typeclasses. Moreover, we believe that greater automation can be achieved by combining AI
assistance with typeclass-based strategies for type inference, an approach that has led to
successful formalized proof of complex math theorems such as the Four Color Theorem and
Odd Order Theorem; see Ch 6 of Mathematical Components for an elaboration. A similar
attempt to solve this problem involves using traits29 to chain complex reasoning steps (e.g.
induction/recursion) . We can replicate this strategy with typeclasses, so as to exploit the same
general proof development engine as that for theorem proving.

Generic Tactics. The eqType typeclass, which consists of types with a comparison function,
allows the equality operator and the rewriting tactic in Coq to be overloaded. Type inference
involves guessing the relevant instance of the typeclass from context when it is not explicitly
given with the operator or tactic. Through overloading, generic refinement-based tactics can be
designed for all types in a given typeclass, and AI models can be trained to use these generic
tactics across a variety of problems with similar structures.

SMT Solvers. Some automated solving can be achieved with refinement reflection30. These SMT
solvers can be integrated into the tool as powerful tactics, and the CorrectByConstruction tool
should recommend such tactics whenever they are applicable.

More details of the above plan is laid out in the Topos, Stanford and Atlas’ NSF AIMing
proposal AI-Assisted Refinement-Based Code Synthesis via Generic Typeclass-Based Tactics.

Deliverables

An interactive tool that initially takes as inputs

30 Refinement reflection: complete verification with SMT, Vazou, N., Tondwalkar, A., Choudhury, V., Scott, R.G., Newton, R.R., Wadler, P. and Jhala, R., 2017.

29 Flexible Correct-by-Construction Programming, Runge, T., Bordis, T., Potanin, A., Thüm, T. and Schaefer, I., 2023.

43

https://leandojo.org/
https://arxiv.org/pdf/2404.12534
https://math-comp.github.io/mcb/
https://drive.google.com/file/d/1we5O3AheKTe3LEQRy7qUiVkHn3JdzP4i/view?usp=drive_link
https://nikivazou.github.io/static/popl18/refinement-reflection.pdf
https://arxiv.org/abs/2211.15261

● A higher-order formal specification of the desired function as a starting goal
● A domain specific logic that describes permissible refinement types
● A set of tactics that act as refinement rules

And generates as outputs

● An implementation that satisfies the specification
● A refinement-based proof that the implementation is a solution

By taking as interactive feedback

● Generic typeclass-based tactics that decompose intermediate subgoals

And by providing as interactive responses

● Suggested tactics for the next step
● Recommended proof scripts to synthesize the desired implementation and proof.

44

Generation | ProgramRepair
Reconcile a divergence in program, proof, and specification

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Generation
Program
Repair

Reconcile a divergence in
program, proof, and specification Transfer 300 1 Engineer 12

Problem

Proof repair is needed when code specifications are updated or when there are errors in a proof
script that is proposed by a human or AI agent. By providing AI assistance for proof repair, we
reduce the friction faced by humans doing code synthesis, increase the success rate of proof
automation by AI agents, and improve proof maintenance of large complex verified systems.

In its full generality, proof repair concerns the fixing of proof scripts in proof assistants. In the
context of formal verification, a proof script may fail because of changes in the specification,
implementation or imported libraries, or even just a change in the script itself. Information
about the change which caused that failure will be extremely useful for deriving a fix for the
proof script. Other information such as the context, documentation or error messages from the
proof assistant can also help.

Plan

Many existing tools and libraries for proof repair are written for the proof assistant Coq. We
want to translate those tools to Lean, so that they can be used in conjunction with other plugins
for AI-assisted code synthesis. For example, Talia Ringer’s lab has some Coq-based solutions,
such as Pumpkin Pi and Baldur, for proof repair.

Pumpkin Pi. This library is an impressive tool for performing proof repair across type
equivalences, and it involves configuration, transport and decompilation. Translating each step
of the tool to work in Lean could be challenging. We could add the methods in the tool as new
tactics (e.g. transport, repair) to Lean Copilot’s current offering (suggest_tactics,
search_proof, select_premises).

Baldur. Another notable Coq tool for LLM-assisted proof generation and repair is Baldur.
Instead of formally deriving the required repair from the specification and proof term, Baldur
queries a large language model for a new proof script by supplying the specification, original
proof term and the generated error message. The new script is then checked by the proof

45

https://homes.cs.washington.edu/~djg/theses/ringer_dissertation.pdf
https://arxiv.org/abs/2303.04910

assistant for correctness. Baldur’s machine learning approach may be more suited for complex
repair problems which are not easily handled by the formal strategies of Pumpkin Pi.

As a start, it will be easier to implement Baldur in Lean, than to implement Pumpkin Pi in Lean,
because Baldur only requires queries to a language model but Pumpkin Pi requires careful
design of the decompiler from the native proof language of Lean to its tactic language.

Drawing from the computational setup of Lean Copilot, we can expose the large language model
or AI system to a proof repair plugin for Lean via CTranslate2 or an API call to a remote server.

We add a new tactic repair to Lean Copilot that takes the current target specification, proof
script and latest error messages, and proposes edits to the proof script. The repair tactic can
then be used in an alternative search_proof tactic that iterates between full proofs and their
repairs until a working proof is obtained, in the spirit of Baldur.

Deliverables

Here are the quarterly milestones.

● Q1: Set up Lean Copilot, and write a Lean tactic that is able to make a call to a large
language model via an API call to a remote server.

● Q2: Write the repair tactic to get suggested fixes from the language model.
● Q3: Provide avenues to finetune the language model on new domains and tactics.
● Q4: Write a new search_proof tactic that iteratively generates full proofs and fixes.

At the end of the project, we should have an interactive tool that initially takes as inputs

● The original formal specification and a verified proof script
● The replacement specification
● The current proposed replacement proof script
● Error messages generated by the proof script

And generates as outputs

● Proposed corrections to the proof script.

46

Generation | ProgramEquivalence
Determine if two programs have equivalent or divergent behavior

Theme Tool Description Category MVP
Cost ($k)

Personnel
required

Duration
(mo)

Generation
Program
Equivalence

Determine if two programs have
equivalent or divergent behavior. Explore 1200

2
Postdocs 24

Problem

Given two implementations of a function with inputs and outputs, such as a legacy
implementation and a new verified implementation, formally check if they have the same
behavior, i.e. the same output for all inputs. If the behaviors are different, provide an example of
the divergent behavior or counterexample, i.e. an input to the function that generates an
undesirable output. In other words, we want a reproducible bug that can help humans in
debugging the implementation. Solving this problem will improve productivity in both code
synthesis and code specification.

In its full generality, this is a very difficult problem. For example, if the function returns True if
the Collatz algorithm (where we iteratively compute 3n+1 or n/2 depending on whether n is odd
or even) terminates but False otherwise, proving that the function is equivalent to the constant
function that returns true is the content of the infamous Collatz conjecture.

We focus on special cases of program equivalence checking. In many cases, we want to use
equivalence checking as a way of finding out if the specification for a new verified
implementation covers all important properties of the legacy implementation. If there is a
difference in program behavior, this difference is either a bug in the legacy implementation, or a
hole in the new specification.

In a verification-aware programming language such as Dafny or Frama-C, it is desirable to have
a plugin that finds a counterexample to a failed verification of the current implementation.

Plan

For auto-active frameworks, we can often use SMT techniques to prove program equivalence or
to find a counterexample. Dafny currently prints a counterexample if you click on the red dot
next to a failed assertion, but the counterexample is often cryptic and difficult to understand.
The goal is to produce smaller examples31, or print the examples in a way that is easier to read32.

32 Better counterexamples for Dafny, Chakarov, A., Fedchin, A., Rakamarić, Z. and Rungta, N., 2022.

31 Improving counterexample quality from failed program verification, Huang, L., Meyer, B. and Oriol, M., 2022.

47

https://www.amazon.science/publications/better-counterexamples-for-dafny
https://arxiv.org/pdf/2208.10492

For more sophisticated problems, there are alignment techniques such as semantic program
alignment33 or algebraic methods34. We can also use test cases and memory traces35 to find
divergence in behaviors. Note that this does not give us a formal proof, but in many cases, this
may be good enough.

Deliverables

An API that takes as inputs

● Two implementations with the same input and output types.

And generates as outputs, either

● A formal proof that the two implementations have the same behaviors; or

● A counterexample, i.e. an input value where the implementations have different outputs.

35 Practical, low-effort equivalence verification of real code, Ramos, D.A. and Engler, D.R., 2011.

34 An algebra of alignment for relational verification, Antonopoulos, T., Koskinen, E., Le, T.C., Nagasamudram, R., Naumann, D.A. and Ngo, M., 2023.

33 Semantic program alignment for equivalence checking, Churchill, B., Padon, O., Sharma, R. and Aiken, A., 2019, June.

48

http://nsl.cs.columbia.edu/projects/minestrone/papers/ucklee-cav-2011.pdf
https://dl.acm.org/doi/abs/10.1145/3571213
https://theory.stanford.edu/~aiken/publications/papers/pldi19.pdf

Call to action
A product plan is incomplete unless it clarifies how an engineer uses the product to deliver an
incremental change to an existing codebase that has a mix of verified and unverified code in
specific languages/etc.

We are creating and will maintain the GitHub repository atlas-computing-org/awesome-AIxFV
as a community tracker for projects that achieve the goals of these tools.

Acknowledgments
Many thanks to Nada Amin, Nora Ammann, Clark Barrett, David ‘davidad’ Dalrymple, Mike
Dodds, Stephane Graham-Lengrand, Justin Gottschlich, Syed Jafri, Anders Jagd, Ramana Kumar,
Mishaal Lakhani, Sam Douglas Pollard, Dawn Song, Bogdan Stanciu, Agustín Martinez Suñé
and Adam Vandervorst for their valuable feedback and suggestions in early versions of this
Toolchain.

This work is a collaboration between the Topos Institute and Atlas Computing, with Topos
providing expertise and writing and Atlas providing funding, direction, and structure. This
work was made possible by the generous support of Protocol Labs and the Survival and
Flourishing Fund.

49

http://github.com/atlas-computing-org/awesome-AIxFV
https://protocol.ai/
https://survivalandflourishing.fund/
https://survivalandflourishing.fund/

